x
Loading
+ -

Universität Basel

02. Mai 2016

Quantensensoren zur hochpräzisen Magnetfeldmessung an Supraleitern

Wissenschaftler des Swiss Nanoscience Institute und des Departements Physik der Universität Basel haben eine neue Methode vorgestellt, mit der sie zum ersten Mal bei Temperaturen nahe des absoluten Nullpunktes Magnetfelder auf der Nanometerskala abbilden konnten. Sie nutzten dabei besondere Diamanten als Quantensensoren in einem neuartigen Mikroskop, um Bilder von Magnetfeldern in Supraleitern in bisher unerreichter Auflösung zu generieren. Die Forscher können damit Messungen vornehmen, die neue Erkenntnisse in der Festkörperphysik erlauben, berichten sie in «Nature Nanotechnology».

Die Gruppe von Georg-H.-Endress-Professor Patrick Maletinsky erforscht bereits seit einigen Jahren sogenannte Stickstoff-Vakanzzentren (NV-Zentren) in Diamanten, um diese als hochpräzise Sensoren einzusetzen. Die NV-Zentren sind natürliche Defekte im Kristallgitter von Diamanten. Die darin enthaltenen Elektronen lassen sich anregen und manipulieren und reagieren empfindlich auf elektrische und magnetische Felder in ihrer Umgebung. Dabei ist es der Eigendrehimpuls (Spin) der Elektronen, der sich in Abhängigkeit der Umgebung verändert und mithilfe verschiedener Messmethoden erfassen lässt.

Maletinsky und seinem Team ist es gelungen, einzelne dieser NV-Spins an Spitzen von Rasterkraftmikroskopen zu platzieren, um damit auf der Nanoskala Magnetfelder abzubilden. Bislang wurden solche Analysen bei Raumtemperatur durchgeführt. Zahlreiche Einsatzgebiete verlangen jedoch Untersuchungstemperaturen nahe des absoluten Nullpunkts. So entfalten beispielsweise supraleitende Materialien ihre besonderen Eigenschaften erst bei sehr tiefen Temperaturen um -200°C. Sie leiten dann elektrischen Strom ohne Verluste und können mit der Ausbildung von sogenannten Vortices exotische magnetische Eigenschaften entwickeln.

Erstmals bei Temperaturen nahe des absoluten Nullpunkts

In der vorliegenden Arbeit haben die Wissenschaftler nun erstmals das neuartige Mikroskop unter kryogenen Bedingungen bei Temperaturen von etwa 4 Kelvin (-269,15 °C) erfolgreich eingesetzt. Sie konnten magnetische Streufelder von Vortices in einem Hochtemperatur-Supraleiter mit einer bislang unerreichten Genauigkeit darstellen.

Thematischer Schwerpunkt
nach oben