x
Loading
+ -

Universität Basel

Zellrezeptoren: Von Lücken und Lückenfüllern

Darstellung der Struktur eines G-Protein gekoppelten Rezeptors
Struktur des membrangebundenen β1-Adrenozeptor mit wasserexponierten (blau), wasserunzugänglichen (gelb) und leeren Räumen (pink). (Bild: Biozentrum, Universität Basel)

Nahezu alle lebenswichtigen Funktionen im menschlichen Körper laufen über eine bestimmte Familie von Andockstellen auf der Zelloberfläche. Diese sogenannten G-Protein gekoppelten Rezeptoren dienen daher als Angriffspunkte für Arzneistoffe, um verschiedenste Krankheiten zu behandeln. Forschende zeigen nun, dass Hohlräume in den Rezeptoren für ihre Aktivierung und damit die Weiterleitung von Reizen ins Zellinnere wichtig sind. Ihr Ansatz, diese Lücken aufzuspüren, könnte die Wirkstoffsuche erleichtern.

23. August 2022

Darstellung der Struktur eines G-Protein gekoppelten Rezeptors
Struktur des membrangebundenen β1-Adrenozeptor mit wasserexponierten (blau), wasserunzugänglichen (gelb) und leeren Räumen (pink). (Bild: Biozentrum, Universität Basel)

G-Protein gekoppelte Rezeptoren (GPCR) ermöglichen es uns zu sehen, Kälte und Wärme zu spüren, Essen zu schmecken, auf Stress zu reagieren und vieles mehr. Diese Rezeptoren befinden sich auf der Zelloberfläche und erkennen eine grosse Bandbreite an Reizen, darunter Nährstoffe, Licht, Düfte oder Hormone. Indem sie ihre Gestalt ändern, übertragen sie die Signale von aussen ins Innere der Zelle. Der Wissenszuwachs über GPCR ist eng mit der modernen Medizin verknüpft: Etwa ein Drittel aller heute im Handel erhältlichen Medikamente richten sich gegen diese Rezeptoren.

Hohlräume für Aktivierung von Rezeptor notwendig

Mithilfe modernster Strukturanalyse haben Forschende unter der Leitung von Prof. Dr. Stephan Grzesiek vom Biozentrum nun gemeinsam mit Kooperationspartnern am Paul-Scherrer-Institut entdeckt, dass sich in den GPCRs Hohlräume befinden, die für die Aktivierung der Rezeptoren notwendig sind. Mit ihrem experimentellen Ansatz, der unter anderem auf der sogenannten NMR-Technologie beruht und in «Nature Chemistry» publiziert wurde, könnte die Suche nach neuen, spezifischen Wirkstoffen mit weniger Nebenwirkungen schneller zum Ziel führen.

Obwohl die 826 beim Menschen bekannten GPCR auf verschiedenste Stimuli ansprechen, sind sie ähnlich aufgebaut. «Wir wollen im Detail verstehen, wie die Rezeptoren Signale übertragen», sagt Dr. Layara Abiko, die diese Studie mitleitete. «Seit vielen Jahren untersuchen wir deshalb den β1-Adrenozeptor, einen GPCR, der im Körper Kampf- oder Fluchtreflexe auslöst.» Dockt das Hormon Adrenalin an den Rezeptor an und aktiviert ihn, ruft dies eine Stressantwort hervor, die sich u.a. durch einen schnelleren Herzschlag und erhöhtem Blutdruck bemerkbar macht. Betablocker hemmen den β1-Adrenozeptor und sind für die Therapie von Bluthochdruck oder Herz-Kreislauf-Erkrankungen heute unverzichtbar.

Exakte Ortung von Hohlräumen

«Dank Hochdruck-NMR und unserer Methode, die auf Röntgenstreuung an Proteinkristallen beruht, in die das Edelgas Xenon eingebaut wurde, konnten wir das Bild von diesem hochdynamischen Adrenozeptor weiter vervollständigen», so Abiko. «Früher nahm man an, dass die Lücken im Rezeptor mit Wasser gefüllt sind. Dem ist jedoch nicht so, einige von ihnen sind völlig leer, wie wir herausgefunden haben.» Wird der Rezeptor aktiviert, ändert sich die Anordnung seiner Bauteile, dabei schliessen sich die Lücken. Der Rezeptor schrumpft, wie ein Schwamm, den man ausdrückt. Im Fall vom β1-Adrenozeptor gibt diese Formänderung den Ausschlag für die Kampf-oder-Flucht-Reaktion

nach oben