x
Loading
+ -

Robuste Schaltkreise aus der Tiefe unserer Evolutionsgeschichte

Hand hält Fossil
Eine Reihe von Schaltern im Erbgut stellt die korrekte Entwicklung der Extremitäten sicher - und gab der Evolution Spielraum, ganz unterschiedliche Extremitäten hervorzubringen. (Foto: KEYSTONE/Science Photo Library/Paul D Stewart)

Ein ausgeklügeltes genetisches System steuert die Entwicklung der Extremitäten. Forschende der Universität Basel werfen ein neues Licht auf den Werkzeugkasten, mit dem die Evolution so unterschiedliche Extremitäten wie Flossen, Flügel, Hufe, Zehen und Finger hervorgebracht hat.

29. September 2021

Hand hält Fossil
Eine Reihe von Schaltern im Erbgut stellt die korrekte Entwicklung der Extremitäten sicher - und gab der Evolution Spielraum, ganz unterschiedliche Extremitäten hervorzubringen. (Foto: KEYSTONE/Science Photo Library/Paul D Stewart)

Vieles könnte schiefgehen, wenn die befruchtete Eizelle zum Embryo und schliesslich zum Baby heranwächst. Spontane Mutationen im Erbgut sind relativ häufig. Dass es meistens doch gut ausgeht, verdanken Mensch und Tier genetischen Programmen, die mit einer Reihe von redundanten Schaltkreisen als Sicherheitsvorkehrung arbeiten und sich in hohem Mass selbst regulieren. Fällt ein Schaltkreis aus, können andere den Ausfall kompensieren.

Für diese Robustheit von Entwicklungsprogrammen interessiert sich die Forschungsgruppe um Prof. Dr. Rolf Zeller und PD Dr. Aimée Zuniga vom Departement Biomedizin der Universität Basel. Ihr Fokus liegt dabei auf einem zentralen Regulator der Gliedmassenentwicklung, einem Protein namens «Gremlin1». Es bremst das Knochenwachstum und spielt eine Rolle in einer ganzen Reihe von Signalnetzwerken. Vor allem aber steuert es die korrekte Ausbildung der sogenannten Gliedmassenknospen im Embryo, aus denen sich die Extremitäten bilden.

Netzwerk sichert korrekte Entwicklung

In Versuchen mit Mäuseembryonen haben die Forschenden eine weitere Ebene der Regulation – und der Robustheit – dieses Entwicklungsprogramms entschlüsselt. Im Fachjournal «Nature Communications» berichten sie von einem Netzwerk an «Schaltern» im Erbgut, das dafür sorgt, dass Gremlin1 am richtigen Ort und in der richtigen Menge produziert wird. Fachleute nennen diese Schalter «Enhancer».

Zuniga vergleicht das System, das sie und ihr Team untersuchen, mit einem Raum mit einer Beleuchtung, welche von einer Serie von Schaltern kontrolliert wird. Das Licht ermöglicht es, die Anleitung zu lesen, um korrekt geformte Gliedmassen auszubilden. «Wir wussten zu Beginn nicht, was jeder einzelne Schalter zur Beleuchtung beträgt», so die Forscherin. «Es könnte einen Master-Schalter geben, der alles Licht löscht, sodass die Anleitung nicht mehr lesbar ist. Stattdessen wissen wir nun, dass alle Schalter zur Beleuchtung beitragen und einzelne veränderte oder defekte Schalter die Beleuchtung nur wenig oder nicht beinträchtigen, sodass immer noch die gesamte Information lesbar ist. Darin liegt die Robustheit des Systems. Sind hingegen zu viele Schalter kaputt, kann die Information nur noch teilweise oder nicht mehr gelesen werden.»

nach oben