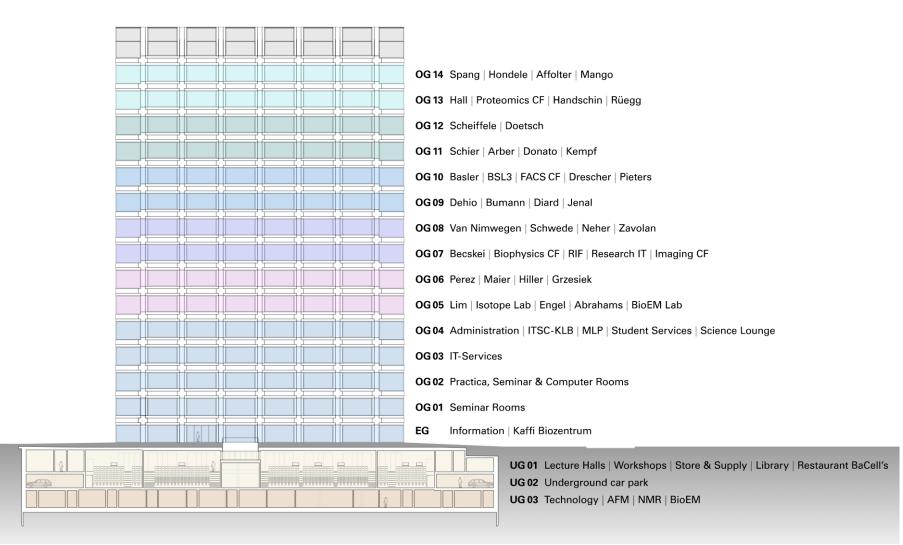
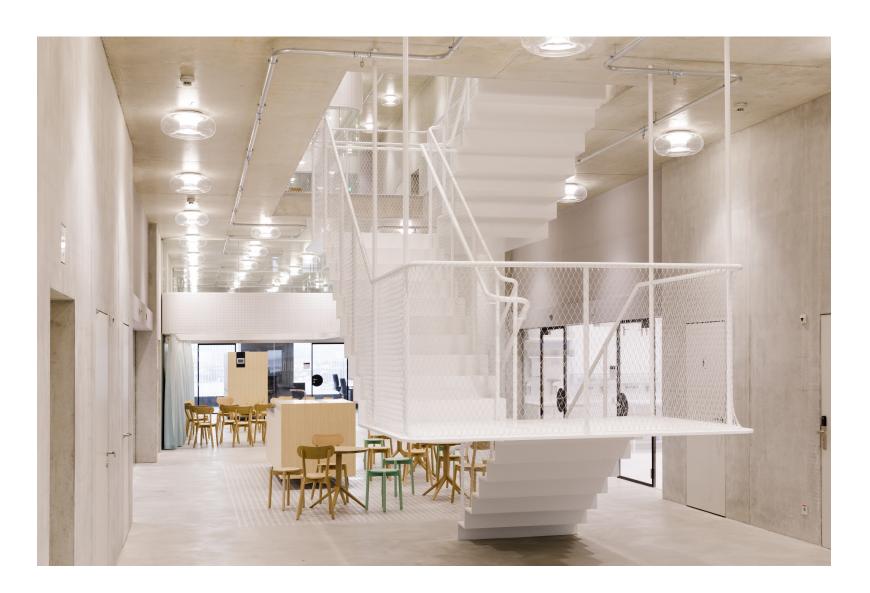
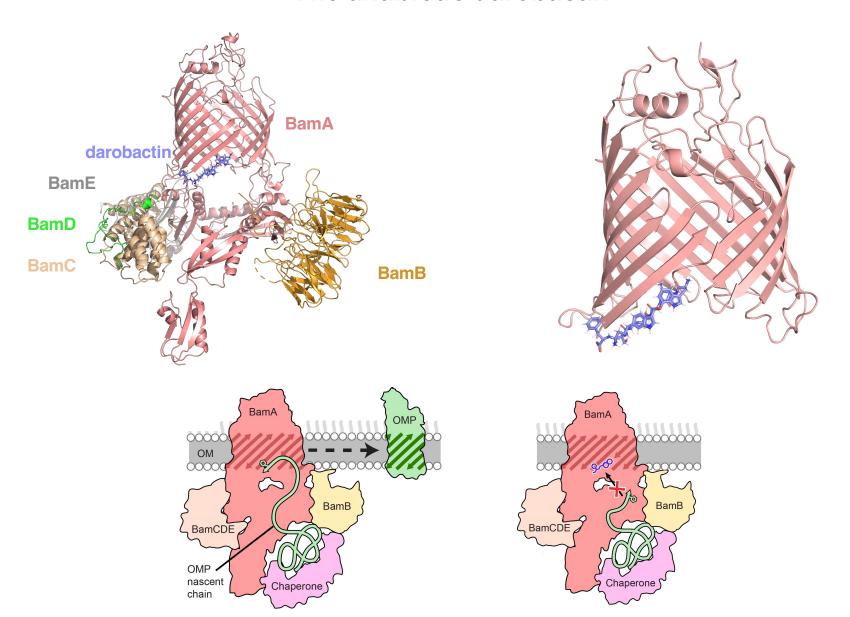
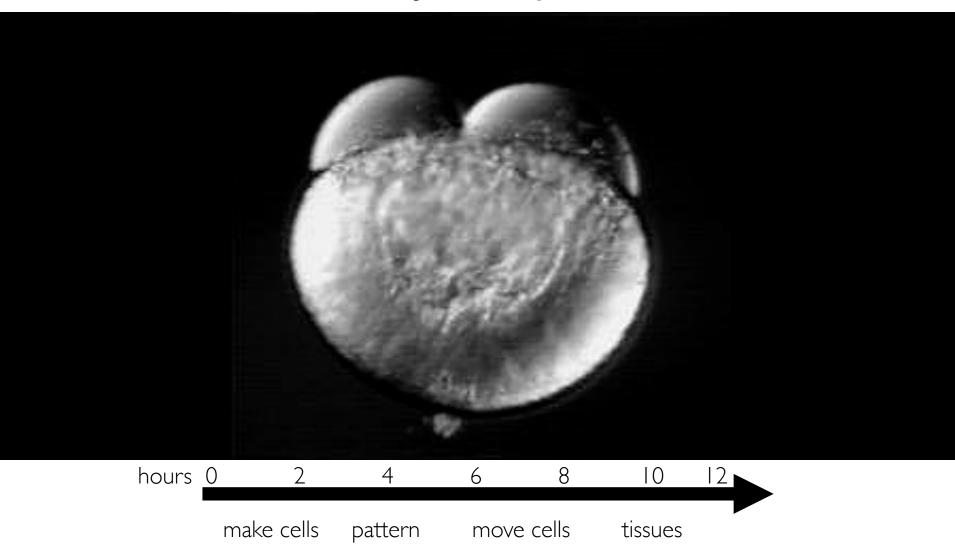

MASTER IN MOLECULAR BIOLOGY



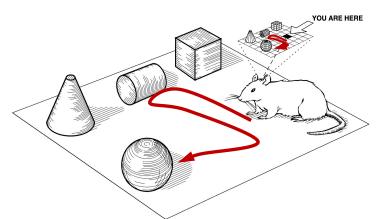


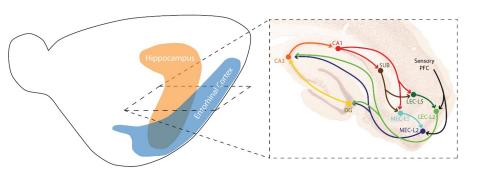


The antibiotic darobactin



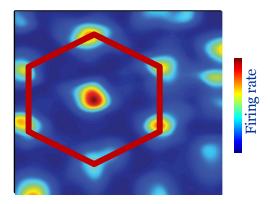
Structure, function and dynamics of Type VI secretion systems


Embryo development

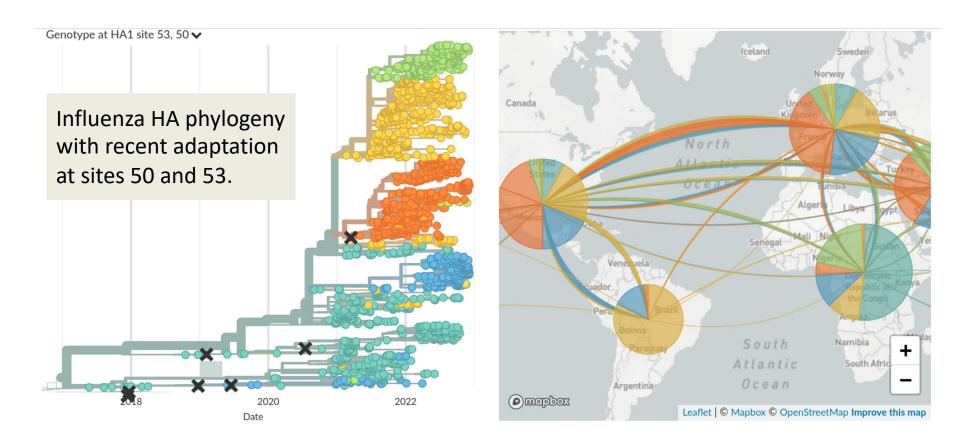


A sense of space in the brain: the cognitive map

Rats can find shortcuts through mazes



The hippocampus as a cognitive map


The neural correlates of the cognitive map: the Grid Cell

Computational analysis of virus evolution and spread

- Develop methods to analyze and visualize evolution of pathogens
- Predictions of what strains will dominate the future to optimize vaccines
- Respiratory viruses are model system of host-pathogen co-evolution

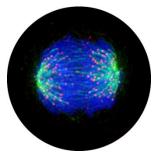
Master of Science in Molecular Biology: Key Features

 Spend 3 semesters / 1.5 years in one of the labs at Biozentrum on a research project

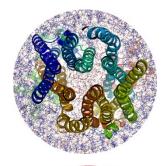
Course structure and ECTS

_	Master thesis	50

Master examination10

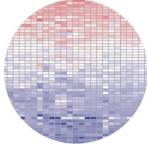

in-depth professional studies

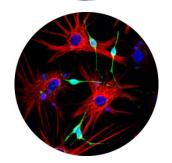
total: 90 credit points


- Start of program
 - anytime possible upon mutual agreement with supervisor
- Language
 - English

Research: Main Research Areas

Searching to understand the mechanisms of life: From atom to organism


Growth & Development


Structural Biology & Biophysics

Infection Biology

Computational & Systems Biology

Neurobiology

Research Area Growth & Development

The molecular basis for:

Doetsch

Hall

Mango

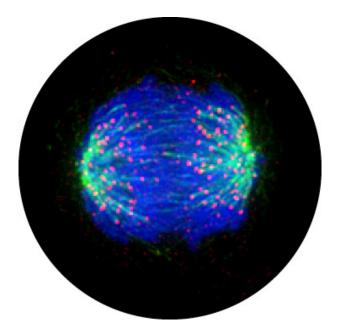
- cell growth and cell division organ development, stem cells
- diseases
 - muscle diseases cancer
 - autism tuberculosis

Pieters

Hondele

Rüegg

Jenal

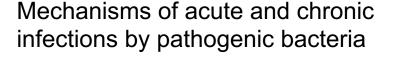


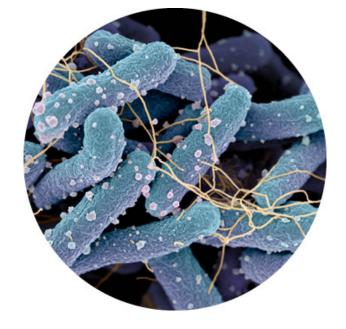
Scheiffele

Schier

Spang

Research Area Infection Biology


Basler


Bumann

Dehio

- improved control of infectious diseases such as
 - Tuberculosis
 - Salmonella
- new anti-infectives and vaccines
- cellular metabolism and its modulation
- Inflammation

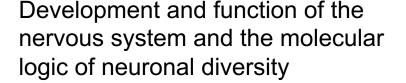
Diard

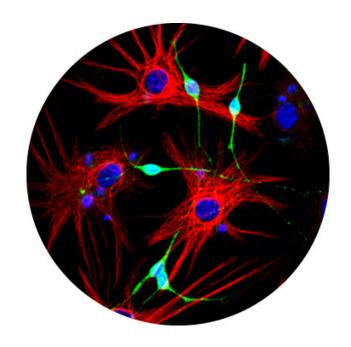
Drescher

Jenal

Pieters

Research Area Neurobiology


Arber


Doetsch

Donato

- development/assembly of the functional brain (neuronal connections)
- control of the locomotor system
- diseases: mental disorders and neuromuscular diseases

Kempf

Rüegg

Scheiffele

Schier

Research Area Structural Biology & Biophysics

Structure, function and the dynamic behavior of biomolecules and their complexes:

Abrahams

Drescher

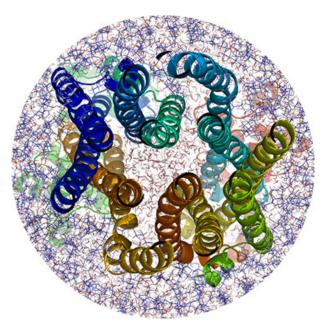
Engel

- molecules at atomic resolution
- membrane proteins, molecular machines, cellular assemblies, and many more
- techniques:
 - nuclear magnetic resonance spectroscopy (NMR)
 - X-ray crystallography
 - electron microscopy
 - atomic force microscopy (AFM)

Grzesiek

Hiller

Lim

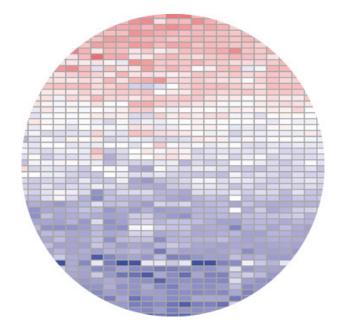


Maier

Perez

Research Area Computational & Systems Biology

Becskei



Neher

Schwede

- Comprehensive perspective on the behavior of complex biological systems:
- monitoring/processing of large scale datasets
- models and simulations
- computational prediction of protein structure
- gene regulatory networks and genome evolution

van Nimwegen

Zavolan

Master of Science in Molecular Biology: Research Groups

Biozentrum: 32 research groups

Markus Affolter

Arber

Marek Basler

Attila Becskei

Dirk Bumann

Christoph Dehio

Médéric Diard

Fiona Doetsch

Flavio Donato

Knut Drescher

Benjamin Engel

Stephan Grzesiek

Michael N. Hall

Christoph Handschin

Sebastian Hiller

Maria Hondele

Urs Jenal

Anissa Kempf

Roderick Lim

Timm Maier

Susan Mango

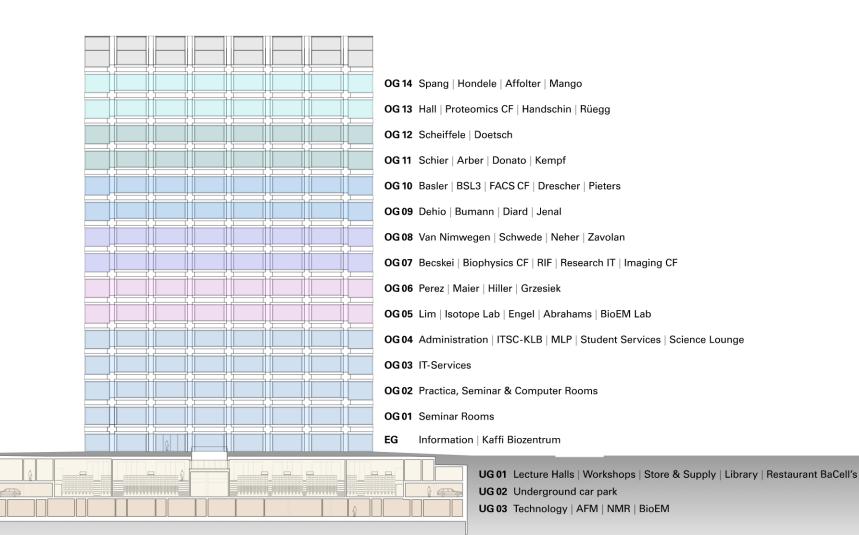
Richard Neher

Camilo Perez

Schwede

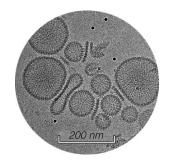
Spang

van Nimwegen


Mihaela Zavolan

Pieters

Markus Rüegg


Peter Scheiffele

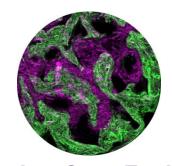
Schier

Biozentrum Technology Platforms

Support of the research with state-of-the art technology and expertise

BioEM Lab
Investigation of structures using electron
microscopy

Biophysics Facility
Measurement of interactions, stability
and size of molecules



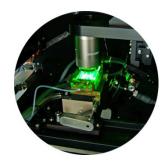
BSL-3 Laboratory
Biosafety lab to study highly contagious
bacteria and viruses

FACS Core Facility
Flow cytometry and cell sorting

Biozentrum Technology Platforms

Imaging Core Facility
Light microscopy and imaging analysis

Proteomics Core Facility
Analysis of proteins using mass
spectrometry



Research IT
Bridging Research and IT

Research Instrumentation Facility
Catalyzing instrument development

Associated University Facilities

Genomics Facility Basel

Sequencing techniques in genomics and epigenomics

Life Sciences Training Facility

Deep-sequencing and microarray technologies

sciCORE

High-performance computing and data management

Technology Ventures

NXI Therapeutics (2021)

NXI Therapeutics (2021)
NXI Therapeutics (2021)
Development of a new generation of immunosuppressive drugs for autoimmune diseases and organ transplantation.

SEAL Therapeutics AG (2021)

Development of an innovative gene therapy for the treatment of congenital muscular dystrophy.

Aukera Therapeutics GmbH (2021)

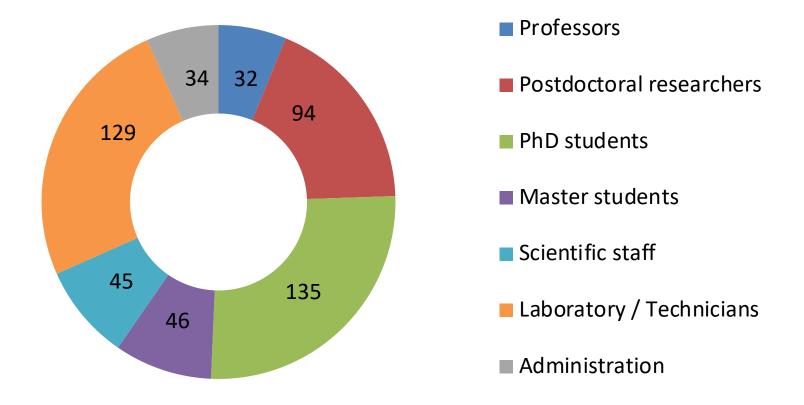
Development of therapies for mTOR-related tumors.

T3 Pharmaceuticals AG (2015)

Simple and fast method for the targeted delivery of therapeutic proteins into cells. Development of the technology for its use in cancer treatment.

Technology Ventures

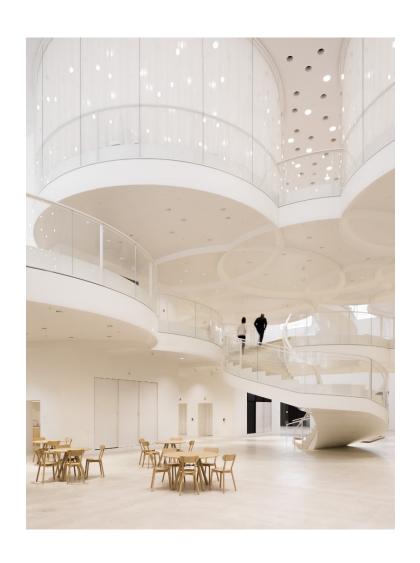
ARTIDIS AG (2014)


Novel nanotechnology for tissue diagnostics, cancer diagnostics and prognosis.

Santhera Pharmaceuticals AG (2000)

Development and commercialization of drugs for the treatment of rare diseases.

Members of Staff 2022: 515



scientists from more than 40 countries

Largest department in the Faculty of Science at the University of Basel

The Biozentrum - The Center for Molecular Life Sciences

- new future-oriented home with state-ofthe art infrastructure for leading-edge research
- one of the worldwide leading institutes in molecular biology research
- regularly more than 200 scientific publications/year – many in top-tier journals
- emphasizes
 - strong research orientation
 - close guidance of its students
- important partner for academia and industry, source of patents and spin-offs

Master of Science in Molecular Biology: Admission

Bachelor's Degree in Biology

Duration: 3 years

3 majors:

- Molecular Biology *
- Animal and Plant Sciences
- Integrative Biology

* access to Master's degree program Molecular Biology

Bachelor's Degree in Computational Sciences

Duration: 3 years

5 majors:

- Computational Biology *
- Computational Chemistry
- Computational Mathematics
- Computational Methods
- Computational Physics

Master of Science in Molecular Biology

Duration: 1.5 years

Master program introduces students to research:
Work in laboratory on Master thesis / Courses in molecular biology

^{*} access to Master's degree program in Molecular Biology

Master of Science in Molecular Biology: Admission

- Students of the University of Basel
 - degrees which allow for direct admission:
 - BSc in Biology, Major in Molecular Biology
 - BSc in Computational Sciences, Major in Computational Biology
 - → no official application needed
 - → students will be informed by the Student Office Biology
- Students of other Swiss and international Universities
 - degrees approved by the Faculty of Science and the Biology Teaching Committee
 - additional requirements of up to 60 credit points possible
 - application deadlines
 - 30 April for fall semester
 - 30 November for spring semester
 - → application: <u>www.unibas.ch/anmeldung</u>
 - → binding information: www.unibas.ch/zulassung

Master of Science in Molecular Biology: Credit Point Details

- 30 CP needed
 - 18 CP from courses of the Master program Molecular Biology
 - specialization in the selected core area
 - Biozentrum Graduate Teaching Program
 - in consultation with the supervisor of the thesis
 - 12 CP chosen freely
 - any course offered at University Basel
 - work outside regular courses
 - poster or presentation in a meeting
 - literature study
 - participation in the University's self-administration
 - tutoring activities

Master of Science in Molecular Biology: Research Groups

Department of Biomedicine (DBM): 32 research groups

Research areas (examples):

Angiogenesis
Cancer Immunology

Cardio Biology

Childhood Leukemia

Diabetes Research

Experimental Hematology

Genodermatoses

Hepatology

Immunobiology

Molecular Virology

Pediatric Immunology

Tissue Engineering

Transplantation Virology

Tumor Biology

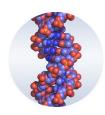
Friedrich Miescher Institute for Biomedical Research (FMI): 21 research groups

Research areas:

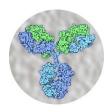
Genome Regulation Multicellular Systems

Neurobiology

Biozentrum Graduate Teaching Program


Cycle A: Infection Biology

Cycle E: Computational and **Systems Biology**


Cycle B: Neuroscience

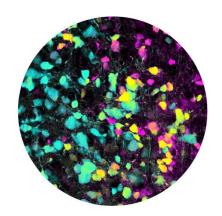
Cycle G: Gene Expression and **Epigenetics**

Cycle C: Growth and Development

Cycle H: Molecular Medicine

Cycle D: Structure and Function of Macromolecules

Cycle I: Practical and Experimental Skills


Biozentrum Graduate Teaching Program: Examples


Cycle B: Neuroscience

- B1: Developmental Neuroscience
- B2: Signaling in the Nervous System
- B3: Genes and Behavior
- B4: Neurological Diseases
- B5: Neurex
- B6: Circuit Dissection of Behaviors

Cycle D: Structure and Function of Macromolecules

- D1: Interactions and Structures and Dynamics of Soluble Proteins
- D2: Molecular Biophysics I
- D3: Large scale protein production of functional proteins
- D4: Molecular Structure, Function, and Dynamics of Membranesand Membrane Proteins
- D5: Molecular Biophysics II
- D6: Structural Biology and Biophysics I
- D7: Structural Biology and Biophysics II

Feedback from Students

Artan Ademi

Masters in Prof. Anne Spang's group

Specialisation: Cell and Developmental Biology

"The correct distribution of proteins and mRNA molecules is vital to a cell's survival. We are aiming to understand the mechanisms determining their localization, as this will provide important information for developmental and stem cell biology.

A PhD student had previously already investigated how they are arranged during cell division prior to daughter cell cleavage. I am now continuing this project and study the behavior of certain genes in yeast cells, which he had not yet looked at."

Feedback from Students

Fabienne Estermann

Masters in Prof. Urs Jenal's group

Specialisation: Infection Biology

"I am working with *Pseudomonas aeruginosa*, a hospital germ that is spreading rapidly due to its resistance to antibiotics and is classified by the WHO as one of the three "priority 1" pathogens for which new antibiotics are urgently needed.

I am investigating how Pseudomonas behaves on surfaces and how it colonizes different areas, i.e. whether it lands and then leaves again, or whether it stays and how it makes this decision." Join us to boldly go where no one has gone before

- Specific information:
 - http://bio.unibas.ch
 - www.biozentrum.unibas.ch

Copyright

- Slide 4: © friedli-fotografie, Basel
- Slide 6: © Daisuke Hirabayashi
- Slide 7, left side: © Daisuke Hirabayashi
- Slide 7, right side: © Adriano A. Biondo
- Slide 28: © Daisuke Hirabayashi
- Slide 37: © friedli-fotografie, Basel